Reaction of Benzofurazan *N*-Oxide with Secondary Aliphatic Amines; Preparation of *NN*-Dialkyl-*N'*-(*o*-nitrophenyl)hydrazines †

By David W. S. Latham, Otto Meth-Cohn,[•] and Hans Suschitzky, The Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, Lancashire

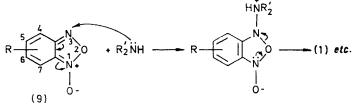
The interaction of benzofurazan *N*-oxide with a variety of secondary aliphatic amines in the cold gives *NN*-dialkyl-*N'*-(*o*-nitrophenyl)hydrazines by attack on the hetero-ring. At higher temperatures, dialkylaminobenzofurazans are obtained by attack on the benzene ring. Substituents in the benzofuran *N*-oxide exerting -/ and -M effects slow down both processes. The interaction of various *NN*-dialkylhydrazines with chloronitrobenzenes and polynitrobenzenes gives either nitrophenyldialkyl-amines or -hydrazines in a predictable manner, for which a mechanistic rationale is proposed, involving charge-transfer complex formation when polynitrobenzenes are used.

As an extension of our studies of *ortho*-substituted dialkylanilines ¹ (' the tertiary-amino-effect ') we initiated a study of the analogous hydrazines [e.g. (1)]. Preliminary experiments suggested a novel route to these compounds, involving the attack of simple secondary amines on benzofurazan N-oxide (9) (Scheme 1). This reaction seemed feasible on the basis of the well known tendency of benzofurazan N-oxides to undergo nucleophilic attack at the 3-position under mild conditions, whereas vigorous conditions tend to cause substitution in the benzene ring.² Indeed, addition of benzofurazan N-oxide to an excess of the amine at 0 °C resulted in an exothermic reaction to give, in many cases, the required hydrazine. Since this was a rare example ² of the ring-opening of a benzofurazan N-oxide to give a nitro-compound we undertook a thorough study of this reaction.

A variety of secondary amines gave the corresponding hydrazines in reasonable yields (Table 1), but larger ring

[†] Preliminary communication, D. W. S. Latham, O. Meth-Cohn, and H. Suschitzky, *Tetrahedron Letters*, 1973, 5635.

¹ O. Meth-Cohn and H. Suschitzky, Adv. Heterocyclic Chem., 1972, 14, 211.

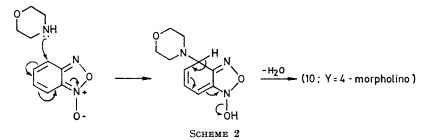

² E.g. A. J. Boulton and P. B. Ghosh, Adv. Heterocyclic Chem., 1969, **10**, 2.

amines (perhydro-azepine and -azocine) gave no hydrazine, and primary aliphatic amines gave no definable

$$Y = \frac{5}{4} \int_{-3}^{0} \frac{1}{NHNR_2} NO_2$$
(1) R = Me
(2) R = Et
(3) R_2 = [CH_2]_4
(4) R_2 = [CH_2]_5
(5) R_2 = [CH_2]_2 \cdot O \cdot [CH_2]_2
(6) R_2 = [CH_2]_2 \cdot NMe \cdot [CH_2]_2
(7) R_2 = Ph, Me
(8) R_2 = [CH_2]_6

products. Use of solvents gave either intractable mixtures or lower yields. The weaker base morpholine action of morpholine in dimethyl sulphoxide, and the 4isomer was identical with the product from the N-oxide. This reaction is readily rationalised, by analogy with known N-oxide substitutions,³ as shown in Scheme 2.

In order to discover the effect of substituents in the benzofurazan N-oxide on the course of the reaction, -ethoxycarbonyl-, 5(6)-chloro-, -trifluoromethyl-, -methoxy-, and -nitro-benzofurazan N-oxide and 4(7)nitro-benzofurazan N-oxide were treated with secondary amines. As the benzofurazan N-oxide is made increasingly electrophilic (by electron-withdrawing substituents) so the reactivity with secondary amines and the tendency to give hydrazines diminishes and attack at the benzene ring dominates. Thus the methoxybenzofurazan N-oxide [9; R = 5(6)-OMe] reacts readily at 0 °C to give unidentified, unstable purple products together with a little hydrazine, probably (4; Y =5-OMe). 5(6)-Chlorobenzofurazan N-oxide gave two hydrazines (4; Y = 5-Cl or 5-piperidino), both resulting formally from attack of piperidine on the 5-chlorobenzofurazan N-oxide (known to be the preferred isomer



SCHEME 1

reacted slowly at 0 °C, and even at 50 °C required 2 days to consume the benzofurazan N-oxide, giving the hy-

drazine (5; Y = H) mixed with a morpholinobenzofurazan (10; Y = morpholino) (10%). Both 4- and 5both in solution⁴ and in the solid state⁵) with no trace of products from attack of the 6-chloroisomer. The 2-nitro-5-piperidinophenylhydrazine (4; Y = 5piperidino) is the expected product of nucleophilic substitution of the activated halide. Perhydroazepine again did not give a hydrazine. 5(6)-Trifluoromethylbenzofurazan N-oxide gave a mixture of the 2-nitro-4-trifluoromethylphenylhydrazine (4; $Y = 4 - CF_3$ (25%) and 5-piperidino-6-trifluoromethylbenzofurazan (10; 36%) by the action of piperidine at 50 °C. At 0 °C or ambient temperature the reaction was sluggish.

morpholinobenzofurazan (10; Y = morpholino) were readily synthesised from the corresponding chlorobenzofurazans (10; Y = 4- or 5-Cl, respectively) by the

³ E.g. R. Fielden, O. Meth-Cohn, and H. Suschitzky, I.C.S. Perkin I, 1973, 705.

As with the 6(5)-nitro- and 6(5)-ethoxycarbonylbenzofurazan N-oxides,⁴ this derivative probably exists largely

⁴ A. J. Boulton, A. R. Katritzky, M. J. Sewell, and B. Wallis, J. Chem. Soc. (B), 1967, 914. ⁵ D. Britton and W. E. Noland, J. Org. Chem., 1962, 27, 3218.

as the 6-isomer, whereby the N-oxide oxygen atom is able to compensate for the strong -I effect of the CF₃ groups. Substitution of the 6-isomer would lead to the above products by analogy with Scheme 1 for the hydrazine and according to Scheme 3 for the furazan. The 6(5)-ethoxycarbonylbenzofurazan N-oxide [9; reactive. Other workers comment on this inertness towards nucleophiles.⁷

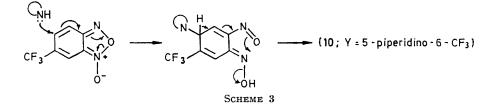
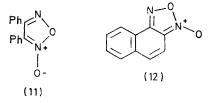

The only reported methods for the synthesis of NNdialkyl-N'-(o-nitrophenyl)hydrazines [e.g. (1)] involve treatment of picryl chloride⁸ or 1-chloro-2,4-dinitrobenzene⁹ with NN-dimethylhydrazine. This type of

TABLE 1

Reaction of benzofurazan N-oxides	(9)) with aliphatic amines
-----------------------------------	-----	-------------------------


Reactants		Conditions					
Benzofurazan		Time		Product(s)			
N-oxide (9)	R'2NH	(days)	Temp. (°C)	Ńo.	Y	%	M.p. (°C)
$\mathbf{R} = \mathbf{H}$	$R'_2 = Me_2$	5	20	(1)	н	5	(Oil)
н	Et_2	5	20	(2)	н	10	(Oil)
н	$[CH_2]_4$	3	0	(3)	Н	44	`64
н	[CH ₂] ₅	5	0	(4)	Н	48	97
н	$[CH_2]_2$ -	1	50	(4) (5)	Н	12	123.5
	$O \cdot [CH_2]_2$			(10)	4-C ₄ H ₈ NO	10	107
н	[CH ₂] ₂	5	20	(6)	H	10	100
~ 01	$\overline{\mathrm{NMe}}\cdot[\mathrm{CH}_2]_2$		0	<i>(</i>)	7 O	-	
5-Cl	$[CH_2]_5$	4	0	(4)	5-Cl	50	117
r op		0 5	20	(4)	5-C ₅ H ₁₀ N	7	141
$5-CF_3$	$[CH_2]_5$	0.5	50	(4)	5-CF,	25	88
5-CO _s Et		4	20	(10) (10)	$5-CF_{3}-6-C_{5}H_{10}N$ $5-CO_{2}Et-6-C_{5}H_{10}N$	36 26	$\begin{array}{c} 64 \\ 95 \end{array}$
5-OMe	$\begin{bmatrix} CH_2 \end{bmatrix}_5 \\ \begin{bmatrix} CH_2 \end{bmatrix}_5 \end{bmatrix}$	4 7	20	(10)	$5-CO_2EI-0-C_5H_{10}N$	20	90
5-NO.	$[CH_{2}]_{5}$ $[CH_{2}]_{5}$	'	-20 to -30				
4-NO ₂	$[CH_{2}]_{5}^{5}$	1	-2010-30 20	(10)	4-C H N-7-NO	37	169
4-NO ₂	$[CH_2]_6$	î	20	(10)	4-C ₅ H ₁₀ N-7-NO ₂ 4-C ₆ H ₁₂ N-7-NO ₂	18	124
4-NO ₂	$[CH_2]_2^6$	î	20	(10)	$4-C_4H_8NO-7-NO_2$	26	221
1102	$O[CH_2]_2$	1		(10)	1 04118110 1 1102	20	221
$4-NO_2$	H, Bu	1	20	(10)	4-NHBu-7-NO ₂	28	94

R = 6(5)-CO₂Et], with a -I, -M substituent, in fact gives no hydrazine and requires a temperature of 50 °C for smooth reaction to give the 5-ethoxycarbonyl-6piperidinobenzofurazan (10), analogous to the product reaction is, however, not of general applicability. Thus, whereas polynitro-compounds prove satisfactory starting materials, mononitro-halogenobenzenes, the obvious starting materials for o-nitrophenylhydrazines, give

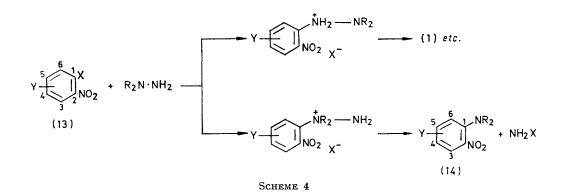
from the trifluoromethyl derivative. However, 6-nitrobenzofurazan N-oxide was a highly reactive system and even at -20 °C in dilute solution gave only intractable material with piperidine. Nevertheless 4(7)-nitrobenzofurazan N-oxide, which exists solely as the 4-isomer,⁶ reacted smoothly with piperidine, morpholine, perhydroazepine or n-butylamine to give the 4-amino-7-nitrobenzofurazans (10) at ambient temperatures. Finally, the interaction of 3,4-diphenylfurazan N-oxide (11) and the naphthofurazan N-oxide (12) with piperidine was examined. Even under reflux these N-oxides were un-

primarily NN-dialkyl-o-nitroanilines (14) (Scheme 4 and Table 2).

The use of protic (methanol, ethanol, or an excess of the hydrazine) or aprotic (benzene, dimethylformamide

- ⁸ H. J. Bocker, Rec. Trav. chim., 1912, **31**, 152.
- ⁹ B. Vis, Rec. Trav. chim., 1939, 58, 747.

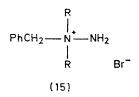
⁶ R. K. Harris, A. R. Katritzky, S. Øksne, A. S. Bailey, and W. G. Paterson, *J. Chem. Soc.*, 1963, 197.
⁷ N. A. Mufarry, M. J. Haddadin, C. H. Issidorides, J. W. McFarland, and J. D. Johnston, *J.C.S. Perkin I*, 1972, 965.


or dimethyl sulphoxide) solvents, various temperatures, a nitrogen atmosphere, or a base (sodium carbonate or diazabicyclo-octane) did not yield more hydrazine. salt (Scheme 4) which by loss of the elements of a halogenoamine yields the aniline. Although the formation of halogenoamines was not confirmed, this mechanism is

Products from the action of nitrobenzenes (13)	on NN-dialkylhydrazines
--	-------------------------

			Product(s)							
Reactants			Phenylhydrazine [(1)-(8)]				Aniline (14)			
$\overline{X} = F$	$\begin{array}{c} (13) \\ Y = H \end{array}$	$ \begin{array}{c} H_2 N \cdot N R_2 \\ R_2 = M e_2 \end{array} $	Cpd. (1)	Y H	%5	M.p. (°C) (Oil)	$\overline{\mathbf{R}^2}$ Me ₂	H Y H	% 80	
	H = H		(1)	11	0	(01)	$[CH_2]_5$	н	83	
F F	H	[CH₂]₅ Ph, Me	(7)	н	37	91 ª		п	00	
r Cl	4-NO,	Me_2	(i)	4-NO ₂	75	117				
	$4-NO_2$ $4-NO_3$	$[CH_2]_4$	(1)	$4-NO_2$	62	170				
Cl F	$4-NO_2$ $4-NO_2$	$[CH_{2}]_{5}^{4}$	(4)	4-NO ₂	83	175-176				
Ċl	$4-NO_2$	[CH ₂] ₅	(4)	4-NO ₂	81	175-176				
Ci	$4-NO_2$	[CH ₂] ₆	(8)	4-NO ₂	57	168				
ČÎ	$4-NO_2^2$	[CH_]	(8) (5)	4-NO2	73	191				
	2	$\begin{bmatrix} CH_2 \end{bmatrix}_2 - O \cdot \begin{bmatrix} CH_2 \end{bmatrix}_2$	(-)	2						
Cl	$4-CF_3$	Me ₂	(1)	$4-CF_3$	72	88	Me_2	4-CF ₃	15	
Cl	$4-CF_3$	[CH]	(3)	4-CF	34	(Oil)	$[C\bar{H}_2]_4$	$4-CF_3$	Trace	
Cl	$4-CF_3$	[CH ₂] ₅	(4)	4-CF ₃	58	88	[CH ₂] ₅	$4-CF_3$	Trace	
C1	$4-CF_3$	[CH ₂] ₆	(8)	4-CF.	46	78	[CH ₂]	4-CF3	Trace	
C1	$4-CF_3$	[CH ₂] ₂	(5)	$4-CF_3$	32	106 - 108	$[CH_2]_2 \cdot O \cdot [CH_2]_2$	$4-CF_3$	Trace	
		$0 \cdot [CH_2]_2$								
C1	$4-CO_2Et$	Me_2	(1) (8)	$4-CO_2Et$	67	100	Me_2	$4-CO_2Et$	18	
C1	$4-CO_2Et$	[CH ₂] ₆	(8)	$4-CO_2Et$	41	95			10	
NO	2 H	Me ₂	(1)	H	33	(Oil)	Me ₂	H	40	
NO	² H	[CH ₂]₅	(1) (4) (8)	H	.9	97	[CH ₂] ₅	H H	,9	
NO		[CH ₂] ₆	(8)	H	15	110	[CH ₂] ₆	н	15	
NO	2 5-Cl	Me ₂	(1) (4) (8)	5-Cl 5-Cl	$\begin{array}{c} 45\\ 42 \end{array}$	118 117				
NO	2 5-C1 2 5-C1	[CH ₂] ₅	(4)	5-C1 5-C1	42 38	(Oil)				
NO NO	$^{2}_{3}$ 5-Cl	$[CH_2]_6$	(5)	5-Cl	$\frac{38}{26}$	154				
NO	2 5-01	$\begin{bmatrix} CH_2 \end{bmatrix}_2 \cdot - \\ O \cdot \begin{bmatrix} CH_2 \end{bmatrix}_2 \end{bmatrix}_2$	(5)	3- C1	20	104				
NO	2 4-NO2	Me_2	(1)	4- NO ₂	86	117				
NO	$\frac{1}{2}$ $\frac{4-100}{2}$	$[CH_2]_5$	(1) (4)	$4-NO_2$	86	175-176				
Cl	$4,6-(NO_2)_2$	Me_2	$(1)^{(1)}$	$4,6-(NO_2)_2$	82	136 %				
	±,0-(1102/2	11202	(*)	2,0(1102/2)	02	100				

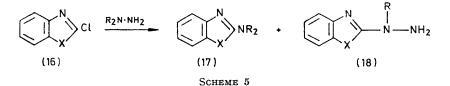
^a Lit. 90° (G. R. Clemo and T. B. Lee, J. Chem. Soc., 1954, 2417). ^b Lit. 136° (H. J. Bocker, Rec. Trav. chim., 1912, 31, 152).


Thus o-fluoronitrobenzene with 1-aminoperhydro[2.2.2]diazepine gave the aniline (14; Y = H, $R_2 = [CH_2]_5$) (60%) and no hydrazine, whereas with NN-dimethylhydrazine the aniline (14; Y = H, R = Me) (80%) and supported by the observations of Nagarajan and his coworkers,¹⁰ who showed that the action of benzyl bromide on NN-dimethylhydrazine or N-aminopiperidine gave a quaternary salt (15). They also showed that 2-chloro-

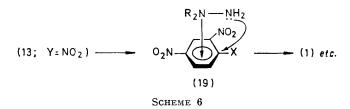
the hydrazine (1; Y = H) (5%) were isolated. The nucleophilicity of the tertiary nitrogen atom of the dialkylhydrazines is greater than that of the primary nitrogen, resulting in the initial formation of a quaternary

benzoxazole or -benzothiazole (16) with dimethylhydrazine gave a mixture of amine (17) and hydrazine ¹⁰ K. Nagarajan, C. L. Kulkarni, and R. K. Shah, *Indian J. Chem.*, 1971, **9**, 748.

(18), whereas N-aminopiperidine gave only (17), both products being derived from an intermediate salt analogous to (15) (Scheme 5). As would be expected on


this basis, N-methyl-N-phenylhydrazine reacted with o-fluoronitrobenzene solely at the primary nitrogen atom, this being the more basic.

The above results do not, however, explain the dichotomy between mono- and poly-nitrobenzenes in their mode of reaction with NN-dialkylhydrazines. This


and (3) hydrazine formation should the ring; be favoured the more nucleophilic the tertiary nitrogen atom of the hydrazine. These factors indeed operate in the examples examined (Table 2). Thus, whereas o-nitrohalogenobenzenes give o-nitroanilines as the major (or sole) product with various hydrazines, the o-dinitro-analogues give increasing quantities of the o-nitrophenylhydrazines as the ring is further substituted with electron-withdrawing substituents. Indeed, o-nitrohalogenobenzenes containing an extra electron-withdrawing group (other than nitro, e.g. 4-CF₃ or 4-CO₂Et) good yields of the required hydrazines.

EXPERIMENTAL

I.r. spectra were recorded with a Perkin-Elmer 257, ¹H n.m.r. spectra with a Varian A60A or HA100, and mass spectra with an A.E.I. MS12 or MS902 instrument. Light

situation is understandable when one considers the role of polynitro-compounds as ' π -acids'. Thus aliphatic tertiary amines are noted for their ability to form chargetransfer (CT) complexes with polynitrobenzenes.¹¹ If nucleophilic substitution in the polynitrohalogenobenzenes is thus preceded by formation of a CT complex (19) with the more nucleophilic site of the hydrazine (the tertiary nitrogen), the less nucleophilic nitrogen is thus conveniently available for substitution (e.g. Scheme 6), leading to the required o-nitrophenylhydrazine. If this postulate is correct, there are several corollaries. With the polynitro-compounds: (1) the reaction should proceed with o-dinitrobenzenes leading to o-nitrophenyl-

hydrazines by substitution of a nitro-group; (2) the reaction should proceed more efficiently the more electron-withdrawing substituents are attached to

- 1963, p. 75.
 1³ A. G. Green and F. M. Rowe, J. Chem. Soc., 1913, 103, 897.
 1⁴ M. O. Forster and M. F. Barker, J. Chem. Soc., 1913, 103,
- ¹⁵ R. J. Gaughran, J. P. Picard, and J. V. R. Kaufmann, J. Amer. Chem. Soc., 1954, 76, 2233.

petroleum refers to the fraction of b.p. 60-80° unless otherwise stated.

Furazan N-Oxides.-The benzofurazan N-oxides (9) were prepared by oxidation of suitable o-nitroanilines with hypochlorite [for (9; $R = H^{12}$, Cl¹³, Br¹⁴, OMe¹⁵, or CF₃⁷)] or by thermal decomposition of the appropriate o-nitrophenyl azide [for (9; $R = H^{12}$, Cl^{13} , 5(6)- NO_2^{16} , 5(6)- CO_2Et^4]. 4(7)-Nitrobenzofurazan N-oxide was prepared by nitration of benzofurazan N-oxide.17 Literature methods were also employed for naphtho[1,2-c]furazan N-oxide ¹⁸ and 3,4-diphenylfurazan N-oxide.7

Benzofurazans.-4-Chlorobenzofurazan 19 was prepared by condensation of 2,6-dichloro-1-nitrosobenzene 20 with sodium azide in dimethyl sulphoxide at 100 °C (70%); 5-chlorobenzofurazan²¹ was obtained from 5(6)-chlorobenzofuroxan by deoxygenation with triethyl phosphite (68%). The 4and 5-chlorobenzofurazans (2.0 g) were separately treated in dimethyl sulphoxide (20 ml) with morpholine (1.5 g)at 100 °C for 24 h. The mixtures were poured onto water and the precipitates were filtered off, washed with water, dried, and recrystallised from light petroleum (b.p. 80-100°) to give yellow needles of 4-morpholinobenzofurazan (53%), m.p. 107° (Found: C, 58.1; H, 5.7; N, 20.8. $C_{10}H_{11}N_3O_2$ requires C, 58.5; H, 5.4; N, 20.5%), M^+ 205, $\lambda_{\rm max.}$ 232 and 392 nm; τ (CDCl_3), 6.28 (m, NCH_2), 5.99 (m, OCH₂), 3.58 (t, J 4 Hz, 6-H), and 2.68 (d, J 4 Hz, 5- and 7-H); or 5-morpholinobenzofurazan (61%), m.p. 129—130° (Found; C, 58.5; H, 5.3; N, 20.7%), M⁺ 205, τ (CDCl₃) 6.65 (m,

- A. G. Green and F. M. Rowe, J. Chem. Soc., 1913, 103, 2023.
 A. G. Green and F. M. Rowe, J. Chem. Soc., 1917, 111, 612.
- ¹⁹ A. J. Boulton, P. B. Ghosh, and A. R. Katritzky, J. Chem.
- Soc. (B), 1966, 1004. ²⁰ R. R. Holmes and R. P. Bayer, J. Amer. Chem. Soc., 1960, 82, 3454.
- ²¹ A. J. Boulton, A. C. Gripper-Gray, and A. R. Katritzky, J. Chem. Soc., 1965, 5958.

¹¹ P. A. S. Smith, 'Open Chain Nitrogen Compounds,' Benjamin, New York, 1965, p. 23. ¹² P. A. S. Smith and J. H. Boyer, *Org. Synth.*, Coll. Vol. IV,

¹⁶ A. S. Bailey and J. R. Case, *Tetrahedron*, 1958, **3**, 113.

NCH₂), 6.04 (OCH₂), 3.18 (d, J 2 Hz, 4-H), 2.62 (dd, J 10 and 2 Hz, 6-H), and 2.17 (d, J 10 Hz, 7-H).

Hydrazines.-The NN-disubstituted hydrazines were prepared by reduction of the appropriate N-nitroso-amines with zinc and acetic acid,²² and were distilled under waterpump vacuum prior to use.

Nitrobenzenes (13).-1,2-Dinitrobenzene,23 1-chloro-3,4dinitrobenzene,²⁴ and ethyl 4-chloro-3-nitrobenzoate ²⁵ were prepared by literature methods and the remaining nitrobenzenes were purchased from Koch-Light.

Interaction of Benzofurazan N-Oxides (9) with Amines.-The benzofurazan N-oxide (9) (2.0 g) and the amine (10 ml)were kept for up to 7 days (monitored by t.l.c. for consumption of benzofurazan N-oxide) at the appropriate temperature (see Table 1). The mixture was poured into water (200 ml) and thoroughly extracted with ether; the extract

* Tables 3 and 4 (analytical and spectral data) are available as Supplementary Publication No. SUP 21829 (4 pp.). For details see Notice to Authors No. 7, *J.C.S. Perkin I*, 1975, Index issue.

²² W. W. Hartmann and L. J. Roll, Org. Synth., Coll. Vol. II, 1950, p. 460; H. Zimmer, L. F. Audrieth, M. Zimmer, and R. A. Rowe, J. Amer. Chem. Soc., 1955, 77, 790.

was washed, dried (MgSO₄), and evaporated. The residue was chromatographed through a column of alumina with benzene-light petroleum (1:1) yielding the hydrazine [(1)-(8); Tables 1 and 3].*

Interaction of the Nitrobenzenes (13) with Hydrazines.-The nitrobenzene (13) (0.02 mol), the hydrazine (0.025 mol), and sodium hydrogen carbonate (2 g) in a suitable solvent were heated as indicated (Table 4) * until the amount of nitrobenzene remaining was minimal (t.l.c.), and the mixture was poured into water. If a solid precipitated it was filtered off and recrystallised; oils were chromatographed on alumina with light petroleum-benzene as eluant to give the products (Tables 2 and 4).*

We thank the S.R.C. for a grant (to D. W. S. L.) and Mrs. S. Bogle for ¹H n.m.r. spectra.

[6/588 Received, 29th March, 1976]

²³ W. D. Emmons and A. F. Ferris, J. Amer. Chem. Soc., 1953,

75, 4623. ²⁴ L. H. Welsh, J. Amer. Chem. Soc., 1941, **63**, 3276.